|Talks|

Edge-exchangeable graphs and sparsity

Visiting speaker
Past Talk
Tamara Broderick
ITT Career Development Assistant Professor, Dept. of Electrical Engineering and Computer Science, MIT
Jan 10, 2017
1:00 pm
Jan 10, 2017
1:00 pm
In-person
4 Thomas More St
London E1W 1YW, UK
The Roux Institute
Room
100 Fore Street
Portland, ME 04101
Network Science Institute
2nd floor
Network Science Institute
11th floor
177 Huntington Ave
Boston, MA 02115
Network Science Institute
2nd floor
Room
58 St Katharine's Way
London E1W 1LP, UK

Talk recording

Many popular network models rely on the assumption of (vertex) exchangeability, in which the distribution of the graph is invariant to relabelings of the vertices. However, the Aldous-Hoover theorem guarantees that these graphs are dense or empty with probability one, whereas many real-world graphs are sparse. We present an alternative notion of exchangeability for random graphs, which we call edge exchangeability, in which the distribution of a graph sequence is invariant to the order of the edges. We demonstrate that a wide range of edge-exchangeable models, unlike any models that are traditionally vertex-exchangeable, can exhibit sparsity. To develop characterization theorems for edge-exchangeable graphs analogous to the powerful Aldous-Hoover theorem for vertex-exchangeable graphs, we turn to a seemingly different combinatorial problem: clustering. Clustering involves placing entities into mutually exclusive categories. A "feature allocation" relaxes the requirement of mutual exclusivity and allows entities to belong simultaneously to multiple categories. In the case of clustering the class of probability distributions over exchangeable partitions of a dataset has been characterized (via "exchangeable partition probability functions” and the "Kingman paintbox"). These characterizations support an elegant nonparametric Bayesian framework for clustering in which the number of clusters is not assumed to be known a priori. We show how these characterizations can be extended to feature allocations and, from there, to edge-exchangeable graphs.

About the speaker
Tamara Broderick is the ITT Career Development Assistant Professor in the Department of Electrical Engineering and Computer Science at MIT. She is a member of the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), the MIT Statistics and Data Science Center, and the Institute for Data, Systems, and Society (IDSS). She completed her Ph.D. in Statistics with Professor Michael I. Jordan at the University of California, Berkeley in 2014. Previously, she received an AB in Mathematics from Princeton University (2007), a Master of Advanced Study for completion of Part III of the Mathematical Tripos from the University of Cambridge (2008), an MPhil by research in Physics from the University of Cambridge (2009), and an MS in Computer Science from the University of California, Berkeley (2013). Her recent research has focused on developing and analyzing models for scalable Bayesian machine learning---especially Bayesian nonparametrics. She has been awarded the ISBA Lifetime Members Junior Researcher Award, the Savage Award (for an outstanding doctoral dissertation in Bayesian theory and methods), the Evelyn Fix Memorial Medal and Citation (for the Ph.D. student on the Berkeley campus showing the greatest promise in statistical research), the Berkeley Fellowship, an NSF Graduate Research Fellowship, a Marshall Scholarship, and the Phi Beta Kappa Prize (for the graduating Princeton senior with the highest academic average).
Share this page:
Jan 10, 2017