Biological networks

role of cellular and sub-cellular connections in biological function and disease

This work focuses on building theoretically driven models of genetic, cellular and protein interactions to understand the role of connectivity in function, regulation and disease. By mapping structural relations across pheno and genotypic features of biological systems, we aim to build entirely new paradigms of biological interactions that will dramatically improve disease prevention strategies.

Featured publications

The exposome and health: Where chemistry meets biology

Roel Vermeulen, Emma L. Schymanski, Albert-László Barabási, Gary W. Miller.
Science
January 24, 2020

Network-based prediction of protein interactions

István A. Kovács, Katja Luck, Kerstin Spirohn, Yang Wang, Carl Pollis, Sadie Schlabach, Wenting Bian, Dae-Kyum Kim, Nishka Kishore, Tong Hao, Michael A. Calderwood, Marc Vidal & Albert-László Barabási
Nature Communications
March 18, 2019

Network integration of multi-tumour omics data suggests novel targeting strategies

Ítalo Faria do Valle, Giulia Menichetti, Giorgia Simonetti, Samantha Bruno, Isabella Zironi, Danielle Fernandes Durso, José C. M. Mombach, Giovanni Martinelli, Gastone Castellani & Daniel Remondini
Nature Communications
October 30, 2018

Recent publications

Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19

Deisy Morselli Gysi, Ítalo Do Valle, Marinka Zitnik, Asher Ameli, Xiao Gan, Onur Varol, Helia Sanchez, Rebecca Marlene Baron, Dina Ghiassian, Joseph Loscalzo, Albert-László Barabási
arXiv
April 15, 2020

The exposome and health: Where chemistry meets biology

Roel Vermeulen, Emma L. Schymanski, Albert-László Barabási, Gary W. Miller.
Science
January 24, 2020

Network-based prediction of protein interactions

István A. Kovács, Katja Luck, Kerstin Spirohn, Yang Wang, Carl Pollis, Sadie Schlabach, Wenting Bian, Dae-Kyum Kim, Nishka Kishore, Tong Hao, Michael A. Calderwood, Marc Vidal & Albert-László Barabási
Nature Communications
March 18, 2019

Network-based prediction of drug combinations

Feixiong Chen, István A. Kovács & Albert László Barabási
Nature Communications
March 13, 2019

Network integration of multi-tumour omics data suggests novel targeting strategies

Ítalo Faria do Valle, Giulia Menichetti, Giorgia Simonetti, Samantha Bruno, Isabella Zironi, Danielle Fernandes Durso, José C. M. Mombach, Giovanni Martinelli, Gastone Castellani & Daniel Remondini
Nature Communications
October 30, 2018

Featured project

The Foodome project aims to understand environmental components of coronary heart disease (CHD). The goal is to categorize food ingredients into their chemical constituents in order to identify precise chemical mechanisms that explain how ingested chemicals lead to CHD. The project will take on an immense data collection effort tracking food intake across large populations to capture individualized chemical palettes and determine stability of individuals’ food fingerprint over time. This work will result in the first ever database cataloging an exhaustive list of chemicals that humans consume, which will be used to explore complex relationships between food intake and disease risk.

Associated faculty

Major funders

American Heart Association, NSF, NIH