|Talks|

Measuring how rank distributions change in time

Visiting speaker
Past Talk
Carlos Gershenson
Visiting Professor to Northeastern University
Sep 12, 2015
8:00 pm
Sep 12, 2015
8:00 pm
In-person
4 Thomas More St
London E1W 1YW, UK
The Roux Institute
Room
100 Fore Street
Portland, ME 04101
Network Science Institute
2nd floor
Network Science Institute
11th floor
177 Huntington Ave
Boston, MA 02115
Network Science Institute
2nd floor
Room
58 St Katharine's Way
London E1W 1LP, UK

Talk recording

Studies of rank distributions have been popular for decades, especially since the work of Zipf. For example, if we rank words of a given language by use frequency (most used word in English is ’the’, rank 1; second most common word is ‘of’, rank 2), the distribution can be approximated roughly with a power law. The same applies for cities (most populated city in a country ranks first), earthquakes, metabolism, the Internet, and dozens of other phenomena. We recently proposed “rank diversity” to measure how rank distributions change in time [1], using the Google Books Ngram dataset. Studying six languages between 1800 and 2009, we found that the rank diversity curves of languages are universal, adjusted with a sigmoid on log-normal scale. We are studying several other datasets (sports, economies, social systems, urban systems, earthquakes, artificial life). Rank diversity seems to be universal, independently of the shape of the rank distribution. I will present our work in progress towards a general description of the features of rank change in time, along with simple models which reproduce it.

About the speaker
Share this page:
Sep 12, 2015