|Talks|

Tensor Networks and Phase Transitions in Machine Learning

Visiting speaker
Hybrid
Past Talk
Cristopher Moore
Professor, Santa Fe Institute
Oct 10, 2024
3:30 pm
Oct 10, 2024
3:30 pm
In-person
4 Thomas More St
London E1W 1YW, UK
The Roux Institute
Room
100 Fore Street
Portland, ME 04101
Network Science Institute
2nd floor
Network Science Institute
11th floor
177 Huntington Ave
Boston, MA 02115
Network Science Institute
2nd floor
Room
58 St Katharine's Way
London E1W 1LP, UK

Talk recording

Suppose we observe a matrix of data with a low-rank “signal” obscured by noise. The standard way to find the signal, at least approximately, is PCA (principal component analysis): just look at the eigenvectors of the matrix. For Gaussian noise, random matrix theory tells us exactly how well this works: that is, the accuracy we can achieve as a function of the signal-to-noise ratio. For tensors, such as three-index tables A_{ijk}, the situation is much more complex. Here there seems to be a “statistical-computational gap,” namely a regime where finding the signal is possible but exponentially hard. Physically, this corresponds to a “glass transition,” where the optimum becomes hidden behind an energy barrier. Mathematically, it means that we believe no polynomial-time algorithm exists, and that exhaustive search is necessary. I’ll give evidence for this exponential hardness by showing that no algorithm remotely similar to PCA can work. Along the way, I’ll give an introduction to tensor networks — a generalization of matrix products and traces thaat everyone, including network theorists, should know about.
About the speaker
Cristopher Moore received his B.A. in Physics, Mathematics, and Integrated Science from Northwestern University, and his Ph.D. in Physics from Cornell. From 2000 to 2012 he was a professor at the University of New Mexico, with joint appointments in Computer Science and Physics. Since 2012, Moore has been a resident professor at the Santa Fe Institute; he has also held visiting positions at École Normale Superieure, École Polytechnique, Université Paris 7, École Normale Superieure de Lyon, Northeastern University, the University of Michigan, and Microsoft Research. He has written 160 papers at the boundary between mathematics, physics, and computer science, ranging from quantum computing, social networks, and phase transitions in NP-complete problems and Bayesian inference, to risk assessment in criminal justice. He is an elected Fellow of the American Physical Society, the American Mathematical Society, and the American Association for the Advancement of Science. With Stephan Mertens, he is the author of The Nature of Computation from Oxford University Press.
Share this page:
Oct 10, 2024