Cognitive Networks and Text Analysis Identify Anxiety as a Key Dimension of Distress in Genuine Suicide Notes

Massimo Stella, Trevor James Swanson, Andreia Sofia Teixeira, Brianne N. Richson, Ying Li, Thomas T. Hills, Kelsie T. Forbush, David Watson
Big Data and Cognitive Computing
9(7), 171
June 27, 2025
Understanding the mindset of people who die by suicide remains a key research challenge. We map conceptual and emotional word–word co-occurrences in 139 genuine suicide notes and in reference word lists, an Emotional Recall Task, from 200 individuals grouped by high/low depression, anxiety, and stress levels on DASS-21. Positive words cover most of the suicide notes’ vocabulary; however, co-occurrences in suicide notes overlap mostly with those produced by individuals with low anxiety (Jaccard index of 0.42 for valence and 0.38 for arousal). We introduce a “words not said” method: It removes every word that corpus A shares with a comparison corpus B and then checks the emotions of “residual” words in 𝐴−𝐵. With no leftover emotions, A and B are similar in expressing the same emotions. Simulations indicate this method can classify high/low levels of depression, anxiety and stress with 80% accuracy in a balanced task. After subtracting suicide note words, only the high-anxiety corpus displays no significant residual emotions. Our findings thus pin anxiety as a key latent feature of suicidal psychology and offer an interpretable language-based marker for suicide risk detection.
Share this page: