Publication
Research areas
We present Epydemix, an open-source Python package for the development and calibration of stochastic compartmental epidemic models. The framework supports flexible model structures that incorporate demographic information, age-stratified contact matrices, and dynamic public health interventions. A key feature of Epydemix is its integration of Approximate Bayesian Computation (ABC) techniques to perform parameter inference and model calibration through comparison between observed and simulated data. The package offers a range of ABC methods such as simple rejection sampling, simulation-budget-constrained rejection, and Sequential Monte Carlo (ABC-SMC). Epydemix is modular, and supports ABC-based calibration both for models defined within the package and for those developed externally. To demonstrate the computational framework capabilities, we discuss usage examples that include (i) simulating an intervention-driven model with time-varying parameters, and (ii) benchmarking calibration performance using synthetic epidemic data. We further illustrate the use of the package in a retrospective case study that includes scenario projections under alternative intervention assumptions. By lowering the barrier for the implementation of computational and inference approaches, Epydemix makes epidemic modeling more accessible to a wider range of users, from academic researchers to public health professionals.