Yuzhong Chen
London E1W 1YW, UK
Portland, ME 04101
2nd floor
11th floor
Boston, MA 02115
2nd floor
London E1W 1LP, UK
Talk recording
Revealing the structure and dynamics of complex networked systems from observed data is of fundamental importance to science, engineering, and society. Is it possible to develop a universal, completely data driven framework to decipher the network structure and di erent types of dynamical processes on complex networks, regardless of their details? We develop a Markov network based model, sparse dynamical Boltzmann machine (SDBM), as a universal network structural estimator and dynamics approximator. The SDBM attains its topology according to that of the original system and is capable of simulating the original dynamical process. We develop a fully automated method based on compressive sensing and machine learning to nd the SDBM. We demonstrate, for a large variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and predicts its dynamical behavior with high precision.